Непрерывная дробь - Definition. Was ist Непрерывная дробь
Diclib.com
Wörterbuch ChatGPT
Geben Sie ein Wort oder eine Phrase in einer beliebigen Sprache ein 👆
Sprache:     

Übersetzung und Analyse von Wörtern durch künstliche Intelligenz ChatGPT

Auf dieser Seite erhalten Sie eine detaillierte Analyse eines Wortes oder einer Phrase mithilfe der besten heute verfügbaren Technologie der künstlichen Intelligenz:

  • wie das Wort verwendet wird
  • Häufigkeit der Nutzung
  • es wird häufiger in mündlicher oder schriftlicher Rede verwendet
  • Wortübersetzungsoptionen
  • Anwendungsbeispiele (mehrere Phrasen mit Übersetzung)
  • Etymologie

Was (wer) ist Непрерывная дробь - definition

ДРОБЬ С ДРОБНЫМ ЗНАМЕНАТЕЛЕМ
Цепная дробь; Подходящие дроби; Подходящая дробь; Непрерывные дроби; Цепные дроби; Формула Браункера
  • Книга Катальди
  • золотого сечения]]

Непрерывная дробь         

цепная дробь, один из важнейших способов представления чисел и функций. Н. д. есть выражение вида

где a0 - любое целое число, a1, a2,..., an,... - натуральные числа, называемые неполными частными, или элементами, данной Н. д. К Н. д., изображающей некоторое число α, можно прийти, записывая это число в виде

где a0 - целое число и 0 < 1/α1 < 1, затем, записывая в таком же виде α1 и т. д. Число элементов Н. д. может быть конечным или бесконечным; в зависимости от этого Н. д. называют конечной или бесконечной. Н. д. (1) часто символически обозначают так:

[а0; a1, a2,..., an,...] (бесконечная Н. д.) (2)

или

[а0; а1, a2,..., an] (конечная Н. д.). (3)

Конечная Н. д. всегда представляет собой рациональное число; обратно, каждое рациональное число может быть представлено в виде конечной Н. д. (3); такое представление единственно, если потребовать, чтобы an ≠ 1. Н. д. [а0; a1, a2,..., ak] (k n), записанную в виде несократимой дроби pk/qk, называют подходящей дробью порядка k данной Н. д. (2). Числители и знаменатели подходящих дробей связаны рекуррентными формулами:

pk+1 = ak+1pk + pk-1, qk+1 = ak+1qk + qk-1,

которые служат основанием всей теории Н. д. Из этих формул непосредственно вытекает важное соотношение

pkqk-1 - qkpk-1 = ± 1.

Для каждой бесконечной Н. д. существует предел

называемый значением данной Н. д. Каждое иррациональное число является значением единственной бесконечной Н. д., получаемой разложением α указанным выше образом, например

(е - 1)/2 = [0, 1,6, 10,14, 18,...];

квадратичные иррациональности разлагаются в периодические Н. д.

Основное значение Н. д. для приложений заключается в том, что подходящие дроби являются наилучшими приближениями числа α, то есть, что для любой другой дроби m/n, знаменатель которой не более gk имеет место неравенство |nα - m| > |gkα - pkl; при этом |qk. - pk| < 1/qk+1. Нечётные подходящие дроби больше α, а чётные - меньше. При возрастании k нечётные подходящие дроби убывают, а чётные возрастают.

Н. д. используются для приближения иррациональных чисел рациональными. Например, известные приближения 22/7, 355/113 для числа π (отношения длины окружности к диаметру) суть подходящие дроби для разложения π в Н. д. Следует отметить, что первое доказательство иррациональности чисел е и π было дано в 1766 немецким математиком И. Ламбертом с помощью Н. д. Французский математик Ж. Лиувилль доказал: для любого алгебраического числа (См. Алгебраическое число) α степени n можно найти такую постоянную λ, что для любой дроби x/y выполняется неравенство |α - x/y| > λ/уn. С помощью Н. д. можно построить числа α такие, что разность |α - pk/qk| делается меньше α/gk, какую бы постоянную λ мы ни взяли. Так, используя Н. д., можно строить трансцендентные числа. Недостатком Н. д. является чрезвычайная трудность арифметических действий над ними, равносильная практической невозможности этих действий; например, зная элементы двух дробей, мы не можем сколько-нибудь просто получить элементы их суммы или произведения.

Н. д. встречаются уже в 16 в. у Р. Бомбелли. В 17 в. Н. д. изучал Дж. Валлис; ряд важных свойств Н. д. открыл Х. Гюйгенс, занимавшийся ими в связи с теорией зубчатых колёс. Многое сделал для теории Н. д. Л. Эйлер в 18 в.

В 19 в. П. Л. Чебышев, А. А. Марков и др. применили Н. д., элементами которых являются многочлены, к изучению ортогональных многочленов (См. Ортогональные многочлены).

Лит.: Чебышев П. Л., Полное собрание сочинений, 2 изд., т. 1, М. - Л., 1946; Хинчин А. Я., Цепные дроби, 2 изд., М. - Л., 1949; Эйлер Л., Введение в анализ бесконечно малых, пер. с лат., т. 1, М. - Л., 1936; Стилтьес Т. И., Исследования о непрерывных дробях, пер. с франц., Хар. - К., 1936; Perron О., Die Lehre von den Kettenbrüchen, 2 Aufl., Lpz. - B., 1929; Wall Н. S., Analytic theory of continued fractions, Toronto - N. Y. - L., 1948.

НЕПРЕРЫВНАЯ ДРОБЬ         
(цепная дробь) , один из важнейших способов изображения чисел. К непрерывной дроби, изображающей некоторое (нецелое) число ?, приходят, записывая это число в виде: ,где a0 - целое число и 0 ? 1/?1 < 1; далее, записывая ?1 в таком же виде: и продолжая этот процесс для ?2 и т. д., получают непрерывную дробь.
НЕПРЕРЫВНЫЕ ДРОБИ         
Последовательность, каждый член которой является обычной дробью, порождает непрерывную (или цепную) дробь, если ее второй член прибавить к первому, а каждую дробь, начиная с третьей, прибавить к знаменателю предыдущей дроби. Например, последовательность 1, 1/2, 2/3, 3/4, ..., n/(n + 1), ... порождает непрерывную дробь
где многоточие в конце указывает на то, что процесс продолжается бесконечно. В свою очередь непрерывная дробь порождает другую последовательность дробей, называемых подходящими. В нашем примере первая, вторая, третья и четвертая подходящие дроби равны
и
Их можно построить по простому правилу из последовательности неполных частных 1, 1/2, 2/3, 3/4, ... . Прежде всего выпишем первую и вторую подходящие дроби 1/1 и 3/2. Третья подходящая дробь равна (2?1 + 3?3)/(2?1 + 3?2) или 11/8, ее числитель равен сумме произведений числителей первой и второй подходящих дробей, умноженных соответственно на числитель и знаменатель третьего неполного частного, а знаменатель равен сумме произведений знаменателей первого и второго неполных частных, умноженных соответственно на числитель и знаменатель третьего неполного частного. Четвертая подходящая дробь получается аналогично из четвертого неполного частного 3/4 и второй и третьей подходящих дробей: (3?3 + 4?11)/(3?2 + 4?8) или 53/38. Следуя этому правилу, находим первые семь подходящих дробей: 1/1, 3/2, 11/8, 53/38, 309/222, 2119/1522 и 16687/11986. Запишем их в виде десятичных дробей (с шестью знаками после запятой): 1,000000; 1,500000; 1,375000; 1,397368; 1,391892; 1,392247 и 1,392208. Значением нашей непрерывной дроби будет число x, первые цифры которого 1,3922. Подходящие дроби являются лучшим приближением числа x. Причем они поочередно оказываются то меньше, то больше числа x (нечетные - больше x, а четные - меньше).
Чтобы представить отношение двух положительных целых чисел в виде конечной непрерывной дроби, нужно воспользоваться методом нахождения наибольшего общего делителя. Например, возьмем отношение 50/11. Так как 50 = 4?11 + 6 или 11/50 = 1/(4 + 6/11), и, аналогично, 6/11 = 1/(1 + 5/6) или 5/6 = 1/(1 + 1/5), получаем:
Непрерывные дроби используются для приближения иррациональных чисел рациональными. Предположим, что x - иррациональное число (т.е. непредставимо в виде отношения двух целых чисел). Тогда, если n0 - наибольшее целое число, которое меньше x, то x = n0 + (x - n0), где x - n0 - положительное число меньше 1, поэтому обратное ему число x1 больше 1 и x = n0 + 1/x1. Если n1 - наибольшее целое число, которое меньше x1, то x1 = n1 + (x1 - n1), где x1 - n1 - положительное число, которое меньше 1, поэтому обратное ему число x2 больше 1, и x1 = n1 + 1/x2. Если n2 - наибольшее целое число, которое меньше x2, то x2 = n2 + 1/x3, где x3 больше 1, и т.д. В результате мы шаг за шагом находим последовательность неполных частных n0, 1/n1, 1/n2, ... непрерывной дроби, являющихся приближениями x.
Поясним сказанное на примере. Предположим, что тогда
Первые 6 подходящих дробей равны 1/1, 3/2, 7/5, 17/12, 41/29, 99/70. Записанные в виде десятичных дробей они дают следующие приближенные значения : 1,000; 1,500; 1,400; 1,417; 1,4137; 1,41428. Непрерывная дробь для имеет неполные частные 1, 1/1, 1/2, 1/1, 1/2, 1/1, ... . Иррациональное число является корнем квадратного уравнения с целочисленными коэффициентами в том и только в том случае, если неполные частные его разложения в непрерывную дробь периодичны.
Непрерывные дроби тесно связны со многими разделами математики, например с теорией функций, расходящимися рядами, проблемой моментов, дифференциальными уравнениями и бесконечными матрицами. Если x - радианная мера острого угла, то тангенс угла x равен значению непрерывной дроби с неполными частными 0, x/1, ?x2/3, ?x2/7, ?x2/9, ..., а если x - положительное число, то натуральный логарифм от 1 + x равен значению непрерывной дроби с неполными частными 0, x/1, 12x/2, 12x/3, 22x/4, 22x/5, 32x/6, ... . Формальным решением дифференциального уравнения x2dy/dx + y = 1 + x в виде степенного ряда является расходящийся степенной ряд 1 + x - 1!x2 + 2!x3 - 3!x4 + ... . Этот степенной ряд можно преобразовать в непрерывную дробь с неполными частными 1, x/1, x/1, 2x/1, 2x/1, 3x/1, 3x/1, ..., а ее в свою очередь использовать для получения решения дифференциального уравнения x2dy/dx + y = 1 + x.

Wikipedia

Непрерывная дробь

Непрерывная дробь (или цепная дробь) — это конечное или бесконечное математическое выражение вида

[ a 0 ; a 1 , a 2 , a 3 , ] = a 0 + 1 a 1 + 1 a 2 + 1 a 3 + , {\displaystyle [a_{0};a_{1},a_{2},a_{3},\cdots ]=a_{0}+{\cfrac {1}{a_{1}+{\cfrac {1}{a_{2}+{\cfrac {1}{a_{3}+\ldots }}}}}},}

где a 0 {\displaystyle a_{0}} есть целое число, а все остальные a n {\displaystyle a_{n}}  — натуральные числа (положительные целые). При этом числа a 0 , a 1 , a 2 , a 3 , {\displaystyle a_{0},a_{1},a_{2},a_{3},\dots } называются неполными частными или элементами цепной дроби.

Любое вещественное число можно представить в виде цепной дроби (конечной или бесконечной). Число представляется конечной цепной дробью тогда и только тогда, когда оно рационально.

Главное (но далеко не единственное) назначение непрерывных дробей состоит в том, что они позволяют находить хорошие приближения вещественных чисел в виде обычных дробей. Непрерывные дроби широко используются в теории чисел и вычислительной математике, а их обобщения оказались чрезвычайно полезны в математическом анализе и других разделах математики. Используются также в физике, небесной механике, технике и других прикладных сферах деятельности.